
Efficient Verifiable Delay Function
Laboratory for cryptologic algorithms (LACAL)

Bachelor semester project

Spring 2019

Novak Kaluderovic, Dusan Kostic, Arjen K. Lenstra

Adrian HAMELINK, Alessio ATTANASIO

March 20, 2021

1

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

Contents

1 Introduction 3

1.1 VDF Definition . 3

1.2 Group construction . 4

1.3 Algorithms . 5

1.4 Realization of the VDF in an RSA group . 6

2 Soundness of the Trapdoor VDF 7

2.1 Generating false proofs . 7

2.2 The RSA-VDF group . 8

2.3 Proof of the VDF’s soundness . 8

3 Sequentiality of the Trapdoor VDF 9

4 Computation of the proof without the secret key 10

4.1 Computing the proof using on-the-fly long division in O(t) . 10

4.2 Computing the proof using precomputed values in O(t/log(t)) 11

4.2.1 Calculating the basis coefficients . 11

4.2.2 Complexity analysis . 12

4.2.3 Memory efficiency . 12

4.2.4 The final algorithm for computing the proof . 13

4.3 Overhead minimization . 14

5 Implementation and results 16

6 References 18

Page 2 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

1 Introduction

Verifiable Delay Functions are a very new area of research in cryptography, with possible applications ranging

from random beacons to blockchains. In this paper we will explain how this class of functions works, present

a specific construction by Benjamin Wesolowski, and then present our concrete implementation of it. The

goal is to better understand how they work, and develop intuition about their security.

We thank the doctoral assistants Novak Kaluderovic and Dusan Kostic as well as the PhD student Aymeric

Genet from the LACL laboratory at EPFL for their help in the realization of this report.

We first give a formal but abstract definition proposed in [Boneh et al.(2018)Boneh, Bünz, and Fisch].

1.1 VDF Definition

Definition 1. Verifiable Delay Function (VDF)

A Verifiable Delay Function (VDF) is a function f : X → Y whose evaluation must take a predetermined

amount of time, regardless of parallelization. The correctness of the output must then be publicly verifiable

in a much shorter amount of time. It is also required that every input x ∈ X has a unique and valid output

y ∈ Y.

An implementation of such a function can be defined by a tuple of three algorithms, namely

setup(k,∆)→ pp

Outputs some random public parameters pp depending on the timing parameter ∆ and security pa-

rameter k.

evalpp(x)→ (y, π)

Effectively computes and outputs the value y = f(x) for an input x ∈ X as well as a proof π with

regards to the public parameters.

verifypp(x, y, π)→ {true, false}
Outputs true if y is the correct output of f(x) and false otherwise.

We also require that this construction satisfies the three following properties, which we state informally here

but detail in a more rigorous way in chapters 2, 3 and 4 respectively.

Soundness

It is not possible to generate a misleading proof π′ for an incorrect output y′.

Sequentiality

There is no algorithm (even using poly(k) parallel processors) which can output the correct result of

evalpp in time less than ∆, for any random x ∈ X .

ε-evaluation time

The algorithm evalpp must run in at least (1 + ε)∆ amount of time. The ε represents the extra time

necessary to compute a proof.

We now introduce the following notations and a definition that will be used throughout the paper, some of

them we have already encountered.

Definition 2. Negligible function

We say that a function η : N→ R is negligible, if for every polynomial f the exists Nf > 0 such that for

every x > Nf we have 1
|η(x)| <

1
|f(x)| .

Page 3 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

Expression Meaning

∆ Timing parameter

k ∈ N∗ Security level (typically 128,192 or 256)

(Z/NZ)× RSA group, where N is the product of two large prime numbers

Primes(2k) Set containing the 22k first prime numbers

a mod b Will always mean the least positive residue of a modulo b

Table 1: Notations

1.2 Group construction

In this paper, we present a construction due to Benjamin Wesolowski (see [Wesolowski(2018)]) and inspired

by the Rivest-Shamir-Wagner time-lock puzzle, which is stated in Assumption 2. We refine the above

algorithms for this context.

setup will generate a tuple formed of a finite abelian group G of unknown order, a hash functionHG : X → G

and a time parameter ∆, all of which are functions of the security parameter k. The time parameter ∆ should

represent the prescribed computation time required to evaluate the VDF. It implicitly defines an integer t

representing the number of squarings to be performed in order to achieve an execution time at least ∆. We

can view ∆ = δt, where δ is the time required to perform a single squaring operation in the group G.

evalpp will then compute y ← (HG(x))(2
t) as well as a proof π used by verifypp. The use of H is justified

as it removes the group homomorphism property of g 7→ g(2
t). Otherwise, we would be able to efficiently

evaluate h(2
t) using another evaluation g(2

t). Indeed, if h = gα, then h(2
t) = (gα)(2

t) = (g(2
t))α and thus

evaluating the VDF on the input h requires a single exponentiation.

Before defining the verification and proof generation procedures, we describe the following interactive

protocol in which a Verifier attests whether a Prover ’s output is the correct result of the computation

y ← (HG(x))(2
t). The Verifier is generally seen as a party with limited computing power who does not trust

the Prover.

1. The Verifier samples a prime l uniformly at random from Primes(2k), sends it to the Prover.

2. The Prover computes π ← gb2
t/lc and sends it to the Verifier.

3. The Verifier computes r ← 2t mod l and accepts if πlgr = y.

To see why step 3 produces a valid assessment, we develop the expression πlgr:

πlgr = (gb2
t/lc)l · g2

t mod l = gb2
t/lcl+(2t mod l) = g2

t

= y

We can define the verifypp algorithm by making this protocol non interactive. Using the Fiat-Shamir

heuristic, we replace the prime sampling step with a non-interactive random oracle. This oracle can be

modeled as cryptographic hash function Hprime(g1, g2), returning a random element in Primes(2k) for any

pair of group elements (g1, g2).

In our case, after evaluating y ← (HG(x))(2
t), the Prover can compute π ← gb2

t/lc using l← Hprime(g, y).

Because Hprime associates the input/output pair to a random prime number l in a deterministic way, l can

then be re-obtained independently by the Verifier as required in step 3.

We suppose that the two methods of verification are equivalent and we will use them interchangeably

throughout the paper.

One may wonder if the above condition can also be satisfied given a different pair (y′, π′) for the same input

x. We explore this question in chapter 2 and determine that it would be near impossible without knowledge

of the secret key sk.

Page 4 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

Definition 3. Trapdoor VDF

A trapdoor VDF is a VDF with the additional property, that there exists a secret key sk for the public

parameters pp and an algorithm trapdoorpp(sk, x) → (y, π), whose evaluation takes significantly less time

than evalpp (less than ∆). The output (y, π) must be accepted by verifypp.

In the context of the group construction, the secret key would represent the order order(G) of the group G

and its utility relies on the following observation:

Let sk := order(G) and q = b2t/skc

g2
t

= gsk·q+(2t mod sk) = gsk·q · g2
t mod sk = eG · g2

t mod sk = g2
t mod sk

The computation (HG(x))(2
t) could then be replaced by (HG(x))(2

t mod sk). This reduces the number of

operations to perform in G remarkably. We will need log2(t) operations in Z/skZ to calculate e = 2t mod sk

and then O(log2 sk) operations in G to compute the exponentiation by e. The speed up becomes apparent

when t >> log2 sk.

1.3 Algorithms

We now present the following realizations of the above mentioned algorithms.

Algorithm 1 evalpp : (x, t)→ (y, π)

1: g ← HG(x) ∈ G

2: y ← g2
t

// by computing t sequential squarings

3: l← Hprime(g, y)

4: π ← gb2
t/lc // Using Algorithm 6, explained in section 4.2.4

5: return (y, π)

Algorithm 2 trapdoorpp : (sk, x, t)→ (y, π)

1: g ← HG(x) ∈ G

2: e← 2t mod sk

3: y ← ge

4: l← Hprime(g, y)

5: r ← 2t mod l

6: q ← (2t − r)/l mod sk

7: π ← gq

8: return (y, π)

Algorithm 3 verifypp : (x, y, π)→ {true, false}
1: g ← HG(x) ∈ G

2: l← Hprime(g, y)

3: r ← 2t mod l

4: if πlgr = y

5: return true

6: else

7: return false

Page 5 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

1.4 Realization of the VDF in an RSA group

The above construction works for any arbitrary finite abelian group G of unknown order. Two such groups

are the ideal class groups and the well known RSA groups. Our implementation will focus on the latter.

For any integer N , we define the ring of integers modulo N as Z/NZ. We can then look at its multiplicative

subgroup (Z/NZ)×. This group’s order is equal to φ(N), where φ is Euler’s totient function counting the

positive integers smaller than N that are relatively prime to it.

The motivation to use the group (Z/NZ)× comes from the computationally hard problem of prime factoriza-

tion. Indeed, if N = p · q for two prime numbers p, q, then φ(N) = (p− 1)(q− 1) and we can only determine

the group order if we know p and q. Moreover, knowing the order of (Z/NZ)× is actually equivalent to

knowing the factorization of N .

In the context of verifiable delay functions, we can generate such a group in the setup algorithm by running

a keygen : (k) 7→ (pk, sk) procedure which generates two prime numbers p, q and output pk = p · q and

sk = (p − 1)(q − 1). The size of pk depends on the security parameter k and should be large enough such

that the factorization of pk remains hard.

The existence of sk implies that a VDF over such a group is a trapdoor VDF. Of course, by ”forgetting”

the key we would fall back to a regular VDF, but it is not clear how that could be achieved in practice. It

might be possible to generate a large N as product of many different prime numbers generated by multiple

parties but again is more difficult in practice.

We note that the computational time complexity of performing operations in (Z/NZ)× is O((log2N)2) (see

page 33 of [Shoup(2008)]).

Hereinafter we shall define the group G as (Z/NZ)×/{±1} where N = pk. We name this group RSA-VDF

group and explain why we use it in chapter 2.2.

The following chapters 2 and 3 will address the security properties of a VDF over the above mentioned

group. The first is soundness, which determines whether it is possible to falsify outputs such that they are

still valid. The second is sequentiality, which assures us that the run time of the eval algorithm will take the

prescribed amount of time. We will see that both of these properties fail when the secret key sk is known.

Page 6 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

2 Soundness of the Trapdoor VDF

In this chapter we will discuss the soundness of our VDF, i.e. determine whether a polynomially bounded

algorithm can produce a false proof and a false output for a given input x. We first introduce the definition

of soundness with respect to our VDF. We then explain how someone could generate false proofs for an

incorrect output of the VDF, followed by a discussion about the use of the RSA-VDF group. Finally, we

prove the soundness of the VDF with the help of some notions that can be found in [Wesolowski(2018)].

Definition 4. Trapdoor VDF soundness-breaking game

Let A be a party playing the game which receives the public parameters pp as input. The player A must then

output a message x, a value y′ and a proof π′. The game is won if the output is such that y′ 6= evalpp(x,∆)

and verifypp(x, y
′, π,∆) = true.

Definition 5. Soundness

A trapdoor VDF is sound if no polynomially bounded algorithm wins the soundness-breaking game (Defini-

tion 4) with non-negligible probability in k.

2.1 Generating false proofs

Recall the verification condition πlgr = y, and note that r can be written as r = 2t − lb2t/lc. Therefore by

multiplying the verification condition by g−2
t

on both sides we obtain:

yg−2
t

=
(
πg−b2

t/lc
)l

(1)

Suppose an adversary E wants to generate a false proof π′ that any verifier must accept. For an input x,

the correct output of the VDF must be y, so E must convince a verifier to accept y′ 6= y. Let g = HG(x) be

the hash result obtained during the evaluation procedure. The generation of a false proof π′ goes as follows:

• E computes α′ = y′g−2
t

• As soon as the prime l is published, E can extract the l-th root of α′ (which we denote β′)

• E multiplies β′ by gb2
t/lc (the result will be named π′)

From (1), we know that the calculated false proof π′ = (y′g−2
t

)1/lgb2
t/lc will trick the verifier into accepting

y′ as correct output. Fortunately, any adversary E will have a very hard time in finding the l-th root in an

RSA group of unknown order. Root extraction is considered a hard problem and the soundness of our VDF

rests on this assumption. This assumption will be addressed in more detail in subchapter 2.3. Note that if

α′ = 1G it is always easy to find an l-th root of α′. This leads to the honest output y = y′ and π′ = π.

Unfortunately, knowledge of the secret sk allows for faster root extractions. If for example we want to

extract the l-th root of g ∈ (Z/NZ)×, it is enough to compute the inverse of l, which is seen as an element

of (Z/φ(N)Z)×. In order to find this inverse, l must be coprime to φ(N). We then make use of Bézout’s

identity: there exist x, y ∈ Z such that lx + φ(N)y = gcd(l, φ(N)). In our case, gcd(l, φ(N)) = 1, so we

obtain lx ≡ 1 mod φ(N).

We can find x and y using the Extended Euclidian Algorithm, which has a complexity of O(log(φ(N))2) (see

page 80 of [Shoup(2008)]). The l-th root of g will then be gx. The following verifies this claim:

(gx)l = gxl = g1−yφ(N) = g1 ∗ g−yφ(N) = g1 = g

Therefore the holder of the secret key can easily generate false proofs.

Page 7 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

2.2 The RSA-VDF group

Right now, the construction of our VDF leaves one little liberty to an adversary E . In equation (1) we

see that after having obtained the output y from the VDF evaluation on x, E can still decide whether the

output should be −y or y. Since l is an odd prime number (we can suppose l 6= 2), modifying the sign of

the proof π will result in a verifier also accepting −y as the correct output. We can represent y ∈ (Z/NZ)×

by an element of {0, 1, . . . N − 1} and therefore suppose y ∈ {0, 1, . . . N − 1}. The element −y of (Z/NZ)×

can then be represented as N − y, which will have the opposite parity of y because N is odd.

We remove the possibility of choosing between y or −y by slightly modifying the underlying RSA group.

Working in the RSA-VDF group contributes to the VDF soundness by removing the possibility of choosing

to output y or −y, accompanied by its misleading proof.

Definition 6. The RSA-VDF group

Let (Z/NZ)× be an RSA group. The RSA-VDF group will be defined as (Z/NZ)×
/
{±1}. If for any two

elements g, h ∈ (Z/NZ)× we have g · h−1 ∈ {±1}, we consider x and y as the same element when viewed in

the RSA-VDF group.

Using the RSA-VDF group we remove the possibility of choosing y or −y as output, because they represent

the same element in the RSA-VDF group.

2.3 Proof of the VDF’s soundness

In this section we prove the soundness of our VDF.

In [Wesolowski(2018)] this is done very formally by defining a root finding game and working with the

following assumption:

Assumption 1.

Let N = pq be a RSA modulus, where p and q are unknown.

It is hard to find u ∈ (Z/NZ)× \{±1} for which l-th roots can be extracted in (Z/NZ)×, for arbitrary values

l sampled uniformly from Primes(2k).

Instead of reproducing the same soundness proof, we prove the following proposition which explains the

mathematical intuition behind using Assumption 1.

Proposition 1.

Our VDF is sound if and only if Assumption 1 holds.

Proof of Proposition 1: Suppose that our VDF is not sound, and that one could generate false proofs in a

polynomially bounded amount of time. We show that this breaks Assumption 1. Let x be the input of the

VDF, y the correct output alongside its correct proof π. Let y′ 6= y be a false output with false proof π′.

Let us define u = π′/π. By (1), we have that y′/y is an l-th root of u. This breaks Assumption 1 because

we have just found an element u 6= 0,±1, from which we could easily extract an l-th root.

Suppose that we can break Assumption 1 and thus have found an element u from which we can extract easily

l-th roots. Denote by ξ the l-th root of u, i. e. ξl = u. Let again y and π be the correct output and proof

on the input x of the VDF. We can generate a valid proof π′ for a false output y′ 6= y by setting y′ = uy

and π′ = ξπ. This pair is accepted by the verifier:

(π′)lxr = (ξπ)lxr = uπlxr = uy = y′ where y = x2
t

, and r = 2t mod l

Therefore our VDF is not sound.

�

Page 8 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

3 Sequentiality of the Trapdoor VDF

In this chapter we will discuss the sequentiality of our VDF depending by the classic time-lock assumption

of Rivest, Shamir and Wagner introduced in [Rivest et al.(1996)Rivest, Shamir, and Wagner]. Under this

assumption, Wesolowski proves in [Wesolowski(2018)] that no polynomially bounded player can evaluate

the VDF correctly without the secret key sk and in time less than ∆ = δt.

We first introduce some notations.

Let M be a model of computation, that is a set of allowable operations along with their respective cost.

For an algorithm A , we define T(A , x) as the amount of sequential work A has to perform in M given x

as input, i.e. the time-cost. The cost C(A , x) will represent the sum of the cost of all the elementary

operations performed by A in M on the input x. Therefore the cost C does not take into account

parallelization whereas the time-cost T does. Note that T(A , x) is an abstraction of the time A takes to

produce the output on input x and does not correspond to real life wall-clock time. Recall the security

parameter k from Table 1. We define δ : N∗ → R≥0 to be a function of k, which encodes the time-cost of

computing a single modular squaring (i.e. a single squaring in the RSA-VDF group). We now introduce

the (δ, t)-time-lock game and the associated time-lock assumption of Rivest, Shamir and Wagner.

Definition 7. (δ, t)-time-lock game

Let A be an algorithm the following game:

• An RSA modulus N is generated at random by an RSA key-generation precedure for the security

parameter k (e.g. keygen)

• A outputs an algorithm B

• An element g ∈ (Z/NZ)× is generated uniformly at random

• B(g) outputs h ∈ (Z/NZ)×

A wins the game if h = g2
t

mod N and T(B, g) < tδ(k).

Assumption 2. Time-lock

• There is no algorithm A such that for any modulus N generated by an RSA key-generation

procedure with security parameter k, and any element g ∈ (Z/NZ)×, the output of A (N, g) is the

square of g and T(A , (N, g)) < δ(k)

• For any t ∈ N∗, no algorithm A of polynomial cost (C(A , g)= O(f(log2(g)) for a polynomial f) wins

the (δ, t)-time-lock game with non-negligible probability with respect to k

The time-lock assumption is crucially important for the security of our VDF. The assumption states that

without knowing the factorization of N , there is no reliable (it succeed with non-negligible probability)

faster way to compute g2
t

than by performing the t squarings sequentially Note that there will always be

the possibility to precompute the results for some values and therefore the probability of winning the

time-lock game will never be zero. But by increasing k (thus the size of the RSA group), this probability

will get very close to zero and therefore be negligible.

It is also worth noting that the running time of our VDF will depend on the hardware on which it is

performed. Since we assume that the computation is not parallelisable, there is no use in using multiple

CPU’s. What our analysis so far didn’t take into account is specialized hardware built to perform specific

computations. Modular squarings could then be performed much more efficiently than on general purpose

hardwares. Wesolowski points out in his paper [Wesolowski(2018)], that the Ethereum Foundation and

Protocol Labs hope to construct a piece of hardware, close enough to today’s technological limits, to

perform multiplications in RSA groups.

Page 9 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

4 Computation of the proof without the secret key

In this section we will discuss how to efficiently compute the proof π = gb2
t/lc. First we present a method

that computes it in O(t) using on-the-fly long division. This method will serve as a building block in the

construction of our final algorithm. In the end, given some specific intermediary results from t sequential

squarings, the proof can be calculated in O(t/log(t)) group operations.

In a last optimization attempt, we reduce the overhead induced by the proof calculation in evalpp, by

splitting the computation into multiple segments. By computing these segments in parallel, we can finish

the procedure slightly after the squarings have been performed, at the expense of larger proof sizes. All the

derivations and the algorithms come from [Wesolowski(2018)].

Our final algorithm produces a proof in time less than t, verifying the ε-evaluation time property

mentionned in the introduction.

4.1 Computing the proof using on-the-fly long division in O(t)
The first problem we encounter in calculating gb2

t/lc is that b2t/lc is too big of a number and we can’t

exponentiate g directly by it. Therefore we compute it on-the-fly using long division. Consider first

Algorithm 4 which, given two numbers t and l, returns the quotient of the division 2t/l, i.e. b2t/lc.

Algorithm 4 Long division for powers of 2: O(t)

1: q := 0

2: r := 1

3: for i = 0→ t− 1

4: b = b2r/lc ∈ {0, 1} ⊂ Z
5: r = 2r mod l

6: q = 2q + b

7: return q

Proof of Algorithm 4: We can prove it very easily by induction:

For t = 1 we get b = b2r/lc = b2/lc. The algorithm then returns 2q + b2/lc = b2/lc which proves the base

case as q = 0. Furthermore, r = 2 mod l is the correct remainder in the base case.

Suppose now that that Algorithm 4 outputs the right result, i.e. b2s/lc for all s strictly smaller than t > 1.

Therefore after the (t− 1)-th iteration, we have q = b2t−1/lc and r = 2t−1 mod l, which leads us to

2t = 2(ql + r) = (2q + b2r/lc)l + (2r mod l)

Which means that

b2t/lc = 2q + b2r/lc

Note that this is exactly what Algorithm 4 would output after the t-th iteration. This proves its

correctness.

�
In order to compute the proof we need to do the exact same operations as in Algorithm 4, but in the

exponent of g, which gives birth to Algorithm 5.

The correctness of Algortihm 5 follows directly from that of Algorithm 4. The complexities are both

dominated by the for loop, which iterates t times. This gives us complexity O(t), which means that

calculating the proof will take as long as calculating the output g2
t

of the VDF itself.

Page 10 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

Algorithm 5 On-the-fly computation of the proof: O(t)

1: x := 1G = g0 ∈ G

2: r := 1 ∈ Z
3: for i = 0→ t− 1

4: b = b2r/lc ∈ {0, 1} ⊂ Z
5: r = 2r mod l

6: x = x2gb

7: return x

4.2 Computing the proof using precomputed values in O(t/log(t))
The basic ideas behind the following method is expressing b2t/lc in basis 2κ for some integer κ ∈ N. Note

that all the elements of the form {g, g2κ , g22κ , . . . } were previously computed during evalpp, by storing

every κ-th element when performing the t squarings.

We then can calculate the proof in the following way:

b2t/lc =
∑
i=0

bi2
κi ⇐⇒ gb2

t/lc =
∏
i=0

(g2
κi

)bi (2)

4.2.1 Calculating the basis coefficients

Let’s denote by bi the coefficients used to write b2t/lc in basis 2κ, i.e. like in the LHS of the equivalence in

(2). In order to compute the proof like above we need to efficiently calculate the coefficients bi. We do so

using Algorithm 4. The euclidian division of 2t by κ gives t = sκ+m⇔ 2t = 2sκ2m where 0 ≤ m < κ.

Using the same notations as in Algorithm 4 we develop and obtain

2m = q0l + r0
2κ2m = q1l + r1

...

2iκ2m = qil + ri

where qi = b2iκ2m/lc and ri = 2iκ2m mod l.

By denoting r′i = b2κri/lc we establish two recursive relations for qi and ri:

qi = 2κqi−1 + r′i−1
ri = 2κri−1 mod l

By expanding the procedure of Algorithm 4 we notice that

qi = 2κqi−1 + r′i−1
= 2κ(2κqi−2 + r′i−2) + r′i−1
...

= 2κiq0 + 2κ(i−1)r′0 + 2κ(i−2)r′1 + . . . 2κr′i−2 + r′i−1

= 2κiq0 +

i−1∑
j=0

2κjr′i−1−j

=⇒ b2t/lc = qs = 2κsq0 +
∑s−1
j=0 2κir′s−1−j

Page 11 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

The searched coefficients are thus given by bi = r′s−1−j if i = 0, 1, . . . s− 1 and bs = q0. By unraveling the

definitions, we get the following closed formula for all the coefficients:

bi =

⌊
2κ(2t−κ(i+1) mod l)

l

⌋
for i = 0, 1, . . . s

4.2.2 Complexity analysis

In this section we will show that the number of group operations required to compute the proof is

O(t/log(t)). By denoting Ib = {i|bi = b} for b ∈ {0, 1, . . . 2κ − 1} we can write

gb2
t/lc =

∏
i=0

(g2
κi

)bi =

2κ−1∏
b=0

(∏
i∈Ib

g2
κi
)b

(3)

Since all the elements in {g, g2κ , g2κ2 , . . . } have already been computed, it will take exactly |Ib| group

operations to compute the inner product in (3). This is done for every b ∈ {0, 1, . . . 2κ − 1}, which means

that the total amount of group operations for computing all the inner products is

2κ−1∑
b=0

|Ib| = log2κ(2t/l) =
tlog2(2)− log2(l)

κlog2(2)
=
t− log2(2)

κ
≈ t

κ
(4)

The amount of group operations for the outer product in (3) is approximately given by

2κ−1∑
b=0

log2(b) + 1 ≤
2κ−1∑
b=0

log2(2κ) + 1 = κ2κ + 2κ ≈ κ2κ (5)

Henceforth by choosing κ = log2(t)/2 we get that the total number of group operations needed to compute

(3) is approximately

t

κ
+ κ2κ =

2t

log2(t)
+
log2(t)

2
t
1
2 = O(t/log(t))

Here we see that it is very important for l to be significantly smaller than N . If l would be as big as N , the

calculations for the bi’s will take as long as every other group operation and thus the complexity of

calculating the proof would increase.

4.2.3 Memory efficiency

One big issue about the method presented above is its consumption of memory space, since we need to

store log2κ(2t) = O(tk) elements of B = {1, 2κ, 22κ, . . . }. In this section we will discuss how to reduce this

memory consumption to only O(
√
t) elements. The idea is to memorize only every κγ-th element of B. If

we choose such a γ to be in O(
√
t), we get the desired memory consumption. In this section we will discuss

how to compute the proof, without having all elements of B in our hands.

Let B′ = {g20 , g2κγ , g22κγ , . . . } denote the memorized values, and Ib,j = {i ∈ Ib|i ≡ j mod γ} We obtain

the following by permuting the terms in (3):

gb2
t/lc =

2κ−1∏
b=0

(∏
i∈Ib

g2
κi
)b

=

2κ−1∏
b=0

(γ−1∏
j=0

∏
i∈Ib,j

g2
κi

)b
=

γ−1∏
j=0

(
2κ−1∏
b=0

(∏
i∈Ib,j

g2
κ(i−j)

)b)2κj

(6)

Note that by definition of Ib,j , every term in the innermost product of 6 will be precomputed, as γ|(i− j).
The amount of necessary group operations to calculate the proof will be t

κ + γκ2κ, which is obtained by

the same method shown above.

Page 12 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

A further optimization can be achieved by splitting the product in (6) into two products. To do this we

define κ1 = bκ/2c and κ0 = κ− κ1, in order to simplify the notation we will denote yb,j =
∏
i∈Ib,j

g2
κ(i−j)

. We

finally obtain that for each j ∈ {0, 1, . . . γ − 1}

2κ−1∏
b=0

ybb,j =

2κ1−1∏
b1=0

(2κ0−1∏
b0=0

yb12κ0+b0,j

)b12κ0
·
2κ0−1∏
b0=0

(2κ1−1∏
b1=0

yb12κ0+b0,j

)b0
(7)

Computing the product in (7) requires a total of 2(2κ + κ2κ/2) group operations.

4.2.4 The final algorithm for computing the proof

We now present the final algorithm for the computation of the proof, based on the formula (7). It requires

t/κ+ γ2κ+1 group operations and storage for t/(κγ) + 2κ group elements.

Algorithm 6 Efficient computation of the proof: O(t/log(t))

1: κ1 ← bκ/2c
2: κ0 ← κ− κ1
3: x← 1G ∈ G

4: for j ← γ − 1 . . . , 0 (descending order)

5: x← x2
κ

6: for b ∈ {0, . . . , 2κ − 1}
7: yb ← 1G ∈ G

8: b← 1

9: r ← 2(t−(j+1)κ) mod κγ mod l

10: for i← 0, . . . , b t−(j+1)κ
κγ c+ 1

11: b← b 2
κr
l c

12: r ← 2κγr mod l

13: yb = yb · g2
(b t
κγ
c−i)κγ

14: for b1 ∈ {0, . . . , 2κ1 − 1}
15: z = 1G ∈ G

16: for b0 ∈ {0, . . . , 2κ0 − 1}
17: z = z · yb12κ0+b0
18: x = x · zb12κ0

19: for b0 ∈ {0, . . . , 2κ0 − 1}
20: z = 1G ∈ G

21: for b1 ∈ {0, . . . , 2κ1 − 1}
22: z = z · yb12κ0+b0
23: x = x · zb0
24: return x

If, for example, one chooses κ = log t
3 and γ =

√
t, this will give us.

Operations:
3t

log(t)
+ t1/22log(t)/3+1 =

3t

log(t)
+ 2t5/6 = O

(t

log(t)

)

Storage:
3t

log(t)t1/2
+ t1/3 = 3

t1/2

log(t)
+ t1/3 = O(

√
t)

Page 13 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

4.3 Overhead minimization

Recall the evaluation of our VDF through evalpp (Algorithm 1): we first perform the t squarings, followed

by the calculation of the corresponding proof. After having performed the t squarings, we know that we

already have the correct output, but other parties would not believe us as long as we haven’t outputed the

proof. The time elapsed between the calculation g2
t

and the calculation of the proof π = gb2
t/lc is called

overhead. Our goal in this section is to explain a method how to minimize the overhead when evaluating

the VDF. The drawback of this method is that the length of the proof will be longer and will therefore

need more space and take longer to verify. The method is due to [Wesolowski(2018)].

By defining ∆ = δt to be the time necessary to perform the t squarings (one squaring takes δ time), we say

that the overhead is ∆/ω. This makes sense as the overhead is basically the time needed to compute the

proof, which takes O(t/log(t)) group operations compared to the squarings. We will use two different

threads and minimize the overhead from ∆/ω to ∆/ωn, where n ∈ N. Instead of outputting a proof

consisting of a single group element π, the proof will be a tuple of the form (π1, π2, . . . πn) as well as (n− 1)

small prime numbers. By definition, ω depends on t, since ω ∈ O(log(t)). To simplify the following

procedure, we assume ω is a constant.

The method consists in proving intermediate squaring results while performing the g2
t

. We explain the

method for n = 2:

• Set t1 := t ω
ω+1 and start evaluating the VDF

• As soon as we performed the t1-th squaring, we store g1 := g2
t1

. On the same thread, we continue

performing the t2 := t− t1 = t− t ω
ω+1 = t 1

ω+1 remaining squarings.

• On another thread, we will calculate the proof π1 = gb2
t1/l1c, where l1 = Hprime(g, g1). This proof

will prove that g1 is the correct output to the t1 squarings of g.

• Note that performing the t2 remaining squarings and computing the partial proof π1 will take

(approximately) the same amount of time.

t2 squarings: δt2 = δt 1
ω+1 = ∆ 1

ω+1 computing π1: δt1
1
ω = δt ω

ω+1
1
ω = ∆ 1

ω+1

• We now need to prove that the last t2 squarings produced the correct output, i. e. compute a proof

π2 for the statement y = g2
t2

1 = g2
t12t2 = g2

t1+t2
= g2

t

.

• The computation of π2 will take δt2/ω = δt 1
ω(ω+1) ≤ ∆/ω2. The overhead has therefore been reduced

from ∆/ω to ∆/ω2.

Note that the proof now consists of (l1, π1, π2). The verification of the final result y = g2
t

will take longer

than with the conventional method and goes as follows:

• Calculate g1 = πl11 g
2t1 mod l1

• Get l2 = Hprime(g1, y)

• Verify that y = πl22 g
2t2 mod l2
1

The above described procedure can be generalized for any n ∈ N∗. In that case we would output a proof of

the form (l1, . . . ln−1, π1, . . . πn). We would then define ti = tωn−i ω−1ωn−1 for i = 1, . . . n. Note that we have

n∑
i=1

ti =

n∑
i=1

tωn−i
ω − 1

ωn − 1
= tωn

ω − 1

ωn − 1

n∑
i=1

1

ωi
= tωn

ω − 1

ωn − 1

(ωn − 1)ω

(ω − 1)ωn+1
= tωn

1

ωn
= t

Page 14 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

We can define recursively gi+1 = g
ti+1

i and πi the proof of it, where g0 = g. Furthermore, every time we are

finished with computing gi we are also finished with computing the proof πi = g
b2ti/lic
i−1 . Indeed we have

that the time to produce the proof πi is ti/ω = tωn−i ω−1ωn−1ω
−1 = tωn−(i+1) ω−1

ωn−1 = ti+1. This is only true

because of the assumption that ω is constant, since ω is empirically defined as such that the proof takes

∆/ω time to compute. Therefore saying that computing πi takes ti/ω time is an approximation, since ω

would depend from ti and thus change at each step. By the results we have seen so far, choosing ω = log(t)

seems reasonable, as the time we need to compute the proof is in O(t/log(t)).

Page 15 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

5 Implementation and results

We can now present details of our practical implementation of the verifiable delay function. Our main focus

was speed and expanding our intuition of the different parameters. We therefore took a few liberties in our

design, perhaps at the expense of some security. The following are some design choices we have made.

• We chose to implement the VDF in C, mainly because our prior experience with it and the finer

control it provides. Additionally we used the GNU Multiprecision Arithmetic Library and OpenSSL

libraries both for their efficiency and established reliability.

• For simplicity, we used k = 128 as the security parameter but it is only used within the Hprime

procedure. However, it should also be used to determine a minimum size for the RSA key.

• Because of the many difficulties associated to correctly implementing cryptographically secure

hashing, we decided not to implement the initial hashing in y ← (H(x))(2
t). While weakening the

security, for benchmarking purposes it is insignificant as it would only add a constant time operation.

• Rather than arbitrarily take κ = log(t)/3 as suggested in [Wesolowski(2018)], we used the

Newton-Raphson method to minimize the number of group operations t/κ+ γ2κ+1 for a given t and

γ =
√
t. The choice of γ provides a fair middle ground between memory usage and speed.

• Because the construction of the VDF applies to any finite abelian group of unknown order, we can

easily change the underlying group by linking to a different group source file.

• As suggested in [Boneh et al.(2018)Boneh, Bünz, and Fisch], it is possible to reduce the overhead

proof calculation by splitting it into parallelizable blocks. However, we chose Wesolowski’s approach

of splitting the squarings into multiple parts and calculating smaller proofs on different threads. This

is more practical when less cores are available.

• All the following results were produced using a quad-core Intel Core i7-4970k running at 4.0 GHz

without Turboboost.

We now analyze some of the results obtained.

22 23 24 25 26 27
log2t

00:00

01:40

03:20

05:00

06:40

08:20

10:00

Ru
nn

in
g

tim
e

(m
in

ut
es

:s
ec

on
ds

)

RSA256
RSA512
RSA1024
RSA2048
Total time
Squaring time
Proof time

18 20 22 24 26
log2t

RSA4096
RSA8192
RSA16384
RSA32768

Figure 1: Running time of the VDF with different RSA moduli

Page 16 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

Figure 1 explores the amount of time to evaluate the VDF using different RSA key sizes. The left graph

shows that keys up to 2048 bits are not useful since the proof generation will take up more time than the

squaring procedure. The right graph

We also can determine the desired t so that the computation of the VDF takes the desired amount of time.

The next graphs shows the effect of splitting the computation into multiple segments in order to minimize

the overhead induced by the proof calculation.

The next figure depicts the speed up obtained when using the overhead minimization technique detailed at

the end of Chapter 4.

256 512 1024 2048 4096 8192 16384 32768
RSA Key Size

00:00

16:40

33:20

50:00

06:40

23:20

Ru
nn

in
g

tim
e

(h
ou

rs
:m

in
ut

es
:s

ec
on

ds
)

Time squaring
Time w/ 1 segment(s)
Time w/ 2 segment(s)
Time w/ 3 segment(s)

256 512 1024 2048 4096 8192 16384 32768
RSA Key Size

Time squaring
Time w/ 1.0 segment(s)
Time w/ 2.0 segment(s)
Time w/ 3.0 segment(s)
Time w/ 4.0 segment(s)
Time w/ 5.0 segment(s)
Time w/ 6.0 segment(s)

2

4

6

8

10

Figure 2: Runtime of the VDF for t = 225 with various segments and ω values.

In the left graph, we chose ω = log t ≈ 7.5 as suggested at the end of Chapter 4. Even when using multiple

segments however, eval must wait for the first proof to finish because the running time does not improve

with more than two segments. This shows that careful considerations must be made when choosing ω, and

that it depends on t as well as the RSA key size. We deduce that ω must be smaller in order to give more

time to compute the first proof and effectively use a larger n.

The graph on the right shows the improvements in run time when setting ω = time for squaring
time for proof . This is

determined after having first computed the VDF sequentially. Because ω is small, the last segments are

still quite large and we must now wait for the last proof to finish. This shows the inversely proportional

relationship between ω and the number of segments and means that we must increase n when we use

smaller ω. We would obviously increase the proof size though.

Page 17 of 18

Adrian HAMELINK, Alessio ATTANASIO Bachelor semester project

6 References

[Boneh et al.(2018)Boneh, Bünz, and Fisch] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two

verifiable delay functions. IACR Cryptology ePrint Archive, 2018:712, 2018. URL

https://eprint.iacr.org/2018/712.

[Rivest et al.(1996)Rivest, Shamir, and Wagner] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock

puzzles and timed-release crypto. Technical report, Cambridge, MA, USA, 1996.

[Shoup(2008)] V. Shoup. A computational introduction to Number Theory and Algebra.

https://www.shoup.net/ntb/ntb-v2.pdf, 2008.

[Wesolowski(2018)] Benjamin Wesolowski. Efficient verifiable delay functions. IACR Cryptology ePrint

Archive, 2018:623, 2018. URL https://eprint.iacr.org/2018/623.

Page 18 of 18

https://eprint.iacr.org/2018/712
https://www.shoup.net/ntb/ntb-v2.pdf
https://eprint.iacr.org/2018/623

	Introduction
	VDF Definition
	Group construction
	Algorithms
	Realization of the VDF in an RSA group

	Soundness of the Trapdoor VDF
	Generating false proofs
	The RSA-VDF group
	Proof of the VDF's soundness

	Sequentiality of the Trapdoor VDF
	Computation of the proof without the secret key
	Computing the proof using on-the-fly long division in O(t)
	Computing the proof using precomputed values in O(t/log(t))
	Calculating the basis coefficients
	Complexity analysis
	Memory efficiency
	The final algorithm for computing the proof

	Overhead minimization

	Implementation and results
	References

